Bioinformatic Analysis of Patient-Derived ASPS Gene Expressions and ASPL-TFE3 Fusion Transcript Levels Identify Potential Therapeutic Targets
نویسندگان
چکیده
Gene expression data, collected from ASPS tumors of seven different patients and from one immortalized ASPS cell line (ASPS-1), was analyzed jointly with patient ASPL-TFE3 (t(X;17)(p11;q25)) fusion transcript data to identify disease-specific pathways and their component genes. Data analysis of the pooled patient and ASPS-1 gene expression data, using conventional clustering methods, revealed a relatively small set of pathways and genes characterizing the biology of ASPS. These results could be largely recapitulated using only the gene expression data collected from patient tumor samples. The concordance between expression measures derived from ASPS-1 and both pooled and individual patient tumor data provided a rationale for extending the analysis to include patient ASPL-TFE3 fusion transcript data. A novel linear model was exploited to link gene expressions to fusion transcript data and used to identify a small set of ASPS-specific pathways and their gene expression. Cellular pathways that appear aberrantly regulated in response to the t(X;17)(p11;q25) translocation include the cell cycle and cell adhesion. The identification of pathways and gene subsets characteristic of ASPS support current therapeutic strategies that target the FLT1 and MET, while also proposing additional targeting of genes found in pathways involved in the cell cycle (CHK1), cell adhesion (ARHGD1A), cell division (CDC6), control of meiosis (RAD51L3) and mitosis (BIRC5), and chemokine-related protein tyrosine kinase activity (CCL4).
منابع مشابه
TFE3 fusions activate MET signaling by transcriptional up-regulation, defining another class of tumors as candidates for therapeutic MET inhibition.
Specific chromosomal translocations encoding chimeric transcription factors are considered to play crucial oncogenic roles in a variety of human cancers but the fusion proteins themselves seldom represent suitable therapeutic targets. Oncogenic TFE3 fusion proteins define a subset of pediatric renal adenocarcinomas and one fusion (ASPL-TFE3) is also characteristic of alveolar soft part sarcoma ...
متن کاملImmunohistochemical discrimination between the ASPL-TFE3 fusion proteins of alveolar soft part sarcoma.
Alveolar soft part sarcoma (ASPS), a rare soft tissue sarcoma, is characterized by a chromosomal translocation der(17)t(X;17)(p11;q25) resulting in the production of 2 fusion proteins encoded by regions of the genes for alveolar soft part locus (ASPL) and the transcription factor E3 (TFE3). In this study, polyclonal antibodies were generated to 25 mer peptides encompassing the junctional region...
متن کاملAlveolar soft part sarcoma of lung: report of a unique case with emphasis on diagnostic utility of molecular genetic analysis for TFE3 gene rearrangement and immunohistochemistry for TFE3 antigen expression
Alveolar soft part sarcoma (ASPS) is a rare, malignant mesenchymal tumor of distinctive clinical, morphologic, ultrastructural, and cytogenetical characteristics. It typically arises in the extremities of adolescents and young adults, but has also been documented in a number of unusual sites, thus causing diagnostic confusions both clinically and morphologically. The molecular signature of ASPS...
متن کاملHigh-resolution array CGH and gene expression profiling of alveolar soft part sarcoma.
PURPOSE Alveolar soft part sarcoma (ASPS) is a soft tissue sarcoma with poor prognosis, and little molecular evidence exists for its origin, initiation, and progression. The aim of this study was to elucidate candidate molecular pathways involved in tumor pathogenesis. EXPERIMENTAL DESIGN We employed high-throughput array comparative genomic hybridization (aCGH) and cDNA-Mediated Annealing, S...
متن کاملHuman Cancer Biology High-Resolution Array CGH and Gene Expression Profiling of Alveolar Soft Part Sarcoma
Purpose: Alveolar soft part sarcoma (ASPS) is a soft tissue sarcoma with poor prognosis, and little molecular evidence exists for its origin, initiation, and progression. The aim of this study was to elucidate candidate molecular pathways involved in tumor pathogenesis. Experimental Design: We employed high-throughput array comparative genomic hybridization (aCGH) and cDNA-Mediated Annealing, S...
متن کامل